Journal of Organometallic Chemistry, 438 (1992) C1-C3 Elsevier Sequoia S.A., Lausanne JOM 23053PC

Preliminary communication

Synthesis and spectroscopic properties of tetrakis(trifluoromethyl)plumbane, (CF₃)₄Pb

R. Eujen and A. Patorra

Anorganische Chemie, Fachbereich 9, Universität-GH, W-5600 Wuppertal (Germany) (Received June 15, 1992)

Abstract

Tetrakis(trifluoromethyl)plumbane, $(CF_3)_4$ Pb, has been prepared by aryl/CF₃ exchange from tetraarylplumbanes, PbR₄ (R = phenyl, *p*-tolyl), and (CF₃)₄Sn. Separation from the excess of (CF₃)₄Sn was achieved by the selective complexation of the much more strongly Lewis-acidic (CF₃)₄Sn with 1,10phenanthroline. The (CF₃)₄Pb was fully characterised by means of vibrational, mass, and multinuclear NMR spectroscopy.

Tetrakis(trifluoromethyl)plumbane, $(CF_3)_4Pb$, was first prepared in small quantities by the reaction of PbCl₂ with CF₃ radicals generated from a hexafluoroethane plasma source [1]. Preparative scale methods that utilise CF₃ reagents, such as those employed in the preparation of $(CF_3)_4Ge$ [2] or $(CF_3)_4Sn$ [3,4], are not known. Recently we reported that $(CF_3)_4Sn$ may be used for the synthesis of mixed alkyl(trifluoromethyl)plumbanes, $(CF_3)_nPbR_{4-n}$, starting from PbR₄ (R = CH₃, C₂H₅; n = 1-3) [5]. The ability of the methyl or ethyl group to replace the CF₃ group, however, decreases with increase in the number of CF₃ groups already attached to lead. Rather high reaction temperatures and long reaction times are thus required, and this results in extensive decomposition of both reactants and product. No formation of $(CF_3)_4Pb$ was observed in these reactions.

We have now found that tetraarylplumbanes such as tetraphenyl- or tetrakis(p-tolyl)plumbane undergo exchange with $(CF_3)_4Sn$ under mild conditions, and the tris(trifluoromethyl)plumbanes $(CF_3)_3PbPh$ and $(CF_3)_3Pb(p$ -tolyl) are formed in high yields [6]. At elevated temperatures and with a large excess of $(CF_3)_4Sn$, the remaining aryl group is replaced and $(CF_3)_4Pb$ is obtained, in yields of up to 60%, according to eq. 1.

$$PbR_{4} + 4(CF_{3})_{4}Sn \xrightarrow{80^{\circ}C} (CF_{3})_{4}Pb + 4(CF_{3})_{3}SnR$$
(1)
(R = phenyl, p-tolyl)

Correspondence to: Professor R. Eujen.

IR (gas)	Ra (liq.)	Symmetry ^b	Assignment
2303 vw			2×1156 = 2312
2268 vw			1156 + 1110 = 2266
2215 vw			$2 \times 1110 = 2220$
2195 vw			1156 + 1034 = 2190
2136 vw			$2 \times 1070 = 2140$
1242 w			721 + 521 = 1242
1156 vvs	1165 vvw, sh	f_2)	$\nu_{\rm s} {\rm CF}_3$
	1153 m, p	a_1	
1110 m		f_1)	
1070 vvs	1058 m	f_2	$\nu_{as}CF_3$
1034 m	1038 w	e)	
721 m	721 s, p	f_2/a_1	δ_{s} CF ₃
	521 w	$e + f_2$	δ_{as} CF ₃
242 m, sh		-	193 + 48 = 241
229 s	230 w, sh	f ₂	ν_{as} PbC ₄
	214 m	$e + f_2$	ρ CF ₃
	193 vs, p	a ₁	$\nu_{\rm s}$ PbC ₄
	48 m	$e + f_2$	δ PbC ₄

Infrared and Raman spectral data for (CF₃)₄Pb^a

^a In cm⁻¹; s = strong, m = medium, w = weak, v = very, sh = shoulder, b = broad, p = polarised. ^b See text.

The volatility of $(CF_3)_4$ Pb and $(CF_3)_4$ Sn allows their separation from the less-volatile $(CF_3)_3$ SnR by fractional condensation but the separation of the resulting $(CF_3)_4$ Sn/ $(CF_3)_4$ Pb mixture requires chemical methods. In general, the Lewis acidity of trifluoromethyltin derivatives is much higher than that of the corresponding lead compounds [6]. Upon addition of a non-volatile donor such as 1,10-phenanthroline, $(CF_3)_4$ Sn is selectively complexed to give a stable, non-volatile 1:1 complex [7]. The identity of $(CF_3)_4$ Pb is fully confirmed by its spectroscopic data. Assignment of the vibrational frequencies, given in Table 1, is straightforward in the light of those for $(CF_3)_4$ Sn [8] and $(CF_3)_4$ Ge [9]. The observation of the symmetry-forbidden e and f_1 components of $v_{as}(CF_3)$ in the IR spectrum hints at a slight deviation from ideal tetrahedral symmetry. Their assignment is confirmed by the overtone spectrum around 2200 cm^{-1} ; that is, in contrast to the unobserved overtone of the e mode, 2×1034 cm⁻¹ (a₁ + e), the f₁ overtone $(2 \times 1110 \text{ cm}^{-1}, a_1 + e + f_2)$ at 2115 cm⁻¹ contains an IR allowed f_2 component. Furthermore, the e mode appears as a very weak depolarised band in the Raman spectrum. The Pb-C stretch modes are clearly discernable around 200 cm^{-1} in the Raman (v_s) and IR (v_{as}) spectrum, respectively. As in the case of $(CF_3)_4$ Ge [9] and $(CF_3)_4$ Sn [8], splitting of the two $\rho(CF_3)$ modes is expected to be small, and in fact is not resolved for $(CF_3)_4$ Pb; the high-energy shoulder of the IR band at 229 cm^{-1} is therefore assigned to a combination tone.

Another possibility for the synthesis of $(CF_3)_4$ Pb involves the bromination of $(CF_3)_3$ PbPh followed by trifluoromethylation with donor-stabilised $(CF_3)_2$ Cd:

$$(CF_3)_3PbPh + Br_2 \longrightarrow (CF_3)_3PbBr + PhBr$$
(2)

$$(CF_3)_3PbBr + (CF_3)_2Cd \longrightarrow (CF_3)_4Pb + CF_3CdBr$$
(3)

Table 1

Details of the preparation and properties of tris(trifluoromethyl)halo- and tris(trifluoromethyl)aryl-plumbanes will be reported separately [6].

Experimental

 $(CF_3)_4$ Sn (0.8 g, 2.0 mmol) was condensed *in vacuo* onto 0.2 g (0.35 mmol) of Pb(*p*-tolyl)₄. After heating at 80°C for 30 min, the $(CF_3)_4$ Pb and excess of $(CF_3)_4$ Sn were removed on a vacuum line and trapped at -95° C. The relative amounts of $(CF_3)_4$ Pb and $(CF_3)_4$ Sn were determined by ¹⁹F NMR spectroscopy. A quantity of 1,10-phenanthroline equimolar to that of $(CF_3)_4$ Sn was added. $(CF_3)_4$ Pb was separated from the precipitated non-volatile tin complex in 57% yield as a colourless liquid with a melting point of -35° C. NMR: ¹⁹F: $\delta(CF_3) - 30.9$ ppm, ²J(PbF) 819.2 Hz, ¹J(CF) 382.4 Hz, ⁴J(FF) 4.3 Hz; ¹³C: $\delta(CF_3)$ 153.3 ppm, ¹J(PbC) 1017.1 Hz, ³J(CF) 9.7 Hz; ²⁰⁷Pb: $\delta - 562.2$ ppm. MS (EI 70 eV; $m_{Pb} = 208$): m/e 465 [(CF₃)₃PbCF₂]⁺ < 1; 415 [(CF₃)₃Pb]⁺ 90; 346 [(CF₃)₂Pb]⁺ 31; 277 [(CF₃)Pb]⁺ 90; 227 [PbF]⁺ 91; 208 [Pb]⁺ 100%.

Acknowledgements. Financial support by the Ministerium für Wissenschaft und Forschung des Landes Nordrhein-Westfalen and the Fonds der Chemischen Industrie is gratefully acknowledged.

References

- 1 T.J. Juhlke, J.I. Glanz and R.J. Lagow, Inorg. Chem., 28 (1989) 980.
- 2 (a) R.J. Lagow, R. Eujen, L.L. Gerchman and J.A. Morrison, J. Fluorine Chem., 10 (1977) 333; (b) R.J. Lagow, R. Eujen, L.L. Gerchman and J.A. Morrison, J. Am. Chem. Soc., 100 (1978) 1722.
- 3 L.J. Krause and J.A. Morrison, J. Am. Chem. Soc., 103 (1981) 2995.
- 4 R. Eujen and U. Thurmann, J. Organomet. Chem., 433 (1992) 63.
- 5 R. Eujen and A. Patorra, J. Organomet. Chem., 438 (1992) 57.
- 6 R. Eujen and A. Patorra, in preparation.
- 7 U. Thurmann, Thesis, University of Wuppertal, 1989; R. Eujen, D.J. Brauer, F. Dörrenbach und U. Thurmann, in preparation.
- 8 R. Eujen, H. Bürger and H. Oberhammer, J. Mol. Struct., 71 (1981) 109.
- 9 R. Eujen and H. Bürger, Spectrochim. Acta, Part A, 35 (1979) 541.